
The YGrep Search Engine
The YGrep Search Engine (YGREP.DLL) is the name of a Dynamic Link Library built for MS-Windows by
Yves Roumazeilles and which is able to provide two search functionalities:

Approximative Search

Regular Expression Search

It can be found bundled with some applications like ClusterView. But, more to the point, you can use it to
enhance your own applications.

New features

Alphabetical list of functions

Function groups

Structures

Registration information

Common questions and features

Future developments

The YGrep Search Engine was brought to life to by an effort to materialize the knowledge I acquired in
text processing in the recent years.

On one hand, as I am sure you already infered, AGREP is the traditional name for Approximative Search.
The notion has been brought to light - at least mine - by Ricardo Baeza-Yates and Gaston H.Gonnet
under the name of Shift-Or (or Shift-Add) search method. To my knowledge, the name of agrep was
originally adopted by Sun Wu and Udi Manber for a Unix utility implementing a similar algorithm.

On the other hand, Regular Expression Search is based on old work by many researchers on automaton
logic. Many implementations have already been found on Unix systems (under the application names of
ed(1) and grep(1)) and others including Vax-VMS, DOS, CP/M, etc. They often differ from the original one
from Unix, but most power users now recognize easily the common syntax and appreciate its powerful
capabilities.

I added some extensions which were not in the original Unix version. In that I was following the interface
specification of various authors including David Conroy (original author of the superb MicroEmacs editor
which I advise you to use in its more recent version by Daniel Lawrence for your MS Windows editing
tasks), Ozan S. Yigit and Karl Hoorsfish. To that I had to add my own salt and pepper to get a working
interface. The original version of this Regular Expression Search was inserted in the YR-Emacs public
domain text editor I wrote on the basis of the afore mentionned MicroEmacs editor.

I apologize for omitting many of the other sources of my little knowledge in the field of programming.

New features
Version 4.01 is more or less a maintenance release with bug removal, performance improvements,
documentation improvements, size reduction, help file improvements.

In version 4.00, the name was changed from AGrep Search Engine to YGrep Search Engine, in order to
avoid confusion with existing Unix/Linux utility named agrep.

I also removed some bugs, optimized out a few bytes, removed some compilation warnings, and did a lot
of field testing with the beta testers.

In version 3.02, the following functions were added:

AGrepSubsBuild

RGrepSubsBuild

InitWordCharTable

AddWordChar

RemoveWordChar

You may also have noticed that the documentation has been improved a lot. Many typos were removed,
and many little errors were corrected (including - shame on me! - the removal of a subject page having
nothing to do with the whole subject). A database of common questions and features has been added to
this help file to improve the efficiency of your bug busting and your understanding of the operation of the
whole YGrep Search Engine.

You may not have noticed, but the performance was improved, some bugs were found by the users (yes!
it's you) and removed. Thanks for your help!

A new version of the YGrep Search Engine for MS-DOS is now available.

Future developments
If you register conveniently, and keep on following the evolution of the YGrep Search Engine, you will see
the following expected future developments real soon now:

 New improved memory management strategies for the registered versions

 Dialog boxes and functions similar to those found in the COMMDLG Dynamic Link Library

 Possible new ways to look for data

YGrep Search Engine approximative search
The approximative search is allowing you to find a text without knowing the exact form of what you are
looking for. For example, you can look for text without taking into account the case of the letters (without
making a difference between uppercase and lowercase letters).

The operation is centered on the fact that in most cases you know a text string which is "approximately"
what you are looking for in your files. Additionaly, you are able to say that you expect this text string to
have a certain number of errors.

For example, the string 'East Germany' is approximately identical to 'West Germany', but there are 2
errors (the first two letters of the words) and 10 matches.

Regular expression search
The regular expression search is allowing you to find a text based on a description which will help you be
more precise than with Approximative Search, but also more difficult to handle before you get used to it.

To give you a first look at what can be done (without going too far into the regular expressions syntax),
here are a few of the possibilities.

You can search for pattern in the beginning (or in the end) of the lines, ignoring the similar patterns which
appears in the middle. You can search for telephone numbers (XXX-X-XXX-XXXX), dates (XX/XX/XX),
times (XX:XX), three-figure-numbers (XXX), or any other strictly formed field of numbers. but you can also
look for patterns a little more evasive like: four letter-words containing no figures, but beginning with an S
letter either in lower- or uppercase and in the end of a line (that is defined by the pattern '\<[Ss][^0-
9_][^0-9_][^0-9_]\>$').

For an extended specification of the regular expression used, see also Regular Expressions

YGrep Search Engine regular expressions
The YGrep Search Engine regular expression routines support the full range of Unix regular expressions
as defined in ed(1) and in grep(1).

Specification
 ^ A circumflex as the first character of the pattern forces matches to beginning of lines.

$ A dollar as the last character of the pattern forces matches to end of lines.

. A period anywhere in the string matches any single character.

* An expression followed by a asterisk matches zero or more occurrences of that expression.

+ An expression followed by a plus sign matches one or more occurrences of that expression.

- An expression followed by a minus sign optionally matches that expression.

[] A string enclosed in square brackets matches any character in that string, but no others. If the
first character of the string is a circumflex the expression matches any character except the characters in
the string. A range of characters may be specified by two characters separated by a -.

\< A backslash followed by an opening < matches the beginning of a word.

\> A backslash followed by a closing > matches the end of a word.

\(A backslash followed by an opening (describes the beginning of a tagged sub-expression (see
Substitution Expressions, it has no effect on search-only expressions).

\) A backslash followed by a closing) describes the end of a tagged sub-expression (see
Substitution Expressions, it has no effect on search-only expressions).

\ A backslash folowed by any other character quotes that character. This allows a search for a
character that is usually a regular expression specifier.

Examples
^Windows matches all lines starting with Windows

Grep$ matches all lines ending with Grep

H..p matches all lines containing Help, Hoop, Harp, etc.

^W.n matches all lines starting with Win, Won, etc.

\$ matches a dollar sign

fo* matches f, fo, foo, etc.

fo+ matches fo, foo, etc.

[xyz] matches x, y and z

a[^xyz]c matches abc, arc and aXb but not axb

([0-9]) matches (0), (1), (2), (3), (4), (5), (6), (7), (8) and (9)

([0-9]*) matches (), (0), (123), (2512), etc.

\<[Aa].*\> matches any non-empty word beginning with either a or A

YGrep Search Engine substitution expressions
The YGrep Search Engine regular expression substitution routines support a small set of expressions to
define how the substitution will be performed.

Specification
& An ampersand in the substituted string forces insertion of the full matched pattern.

\number A backslash followed by a number forces the insertion of the tag matched with the
equivalent number in the pattern.

\& An escape sequence to allow the insertion of the & character (while removing its matched
pattern meaning).

Examples
Patterns Substitution

Windows MS-& replaces all occurences of Windows with MS-Windows

\(dows\)\([Ww]in\) \2\1 allows to reorder the pattern dowsWin into the normal Windows
regardless of the letter-casing of the W in the beginning of the word

Note that \0 is equivalent to & and they both match the whole found string.

YGrep Search Engine Limitations
The YGrep Search Engine is limited in both the length of the pattern it can manage and in the maximum
number of errors it accepts.

The length of the pattern is limited to 1024 letters maximum.

The number of errors is limited to 512 maximum.

Both of them are limited by the following formula:

length_of_pattern <= 1024 / (log2(number_of_errors) + 1)

The simple meaning of this formula is that if you have a long pattern, you cannot have a large number of
errors. For example, with a 512 character pattern you must limit yourself to 1 error only. In most cases,
this is not too limiting, but it should be noticed.

To partly overcome that constraint it is also possible to use the non-cased text search fonctionality.

Should you need to have a limitation placed higher or lower, please, contact the author for a customized
version (this is not much more expensive than a standard package) or a source code license.

Single User Registration Fee

Yes! We remind you the single user license fee is only a mere 130FF or US$20.

Registering The YGrep Search Engine

The YGrep Search Engine is distributed as ShareWare. It is not free or public domain. This means you
may copy and distribute it freely but should you find it useful and use it beyond an initial evaluation period
of 30 days you are both legally and morally obliged to pay the registration fee or license fee.

Yes, I want to register now!

 Yves Roumazeilles - the author France - No credit cards

 Public (Software) Library US - credit card orders

What you get when registering
This is the important question. Here is the list:

- updated and optimized full YGrep Search Engine with the license to use it on a single computer. This will
include a complete registered MS-Windows DLL, and libraries for MS-DOS (small, compact, medium, and
large memory models).

- user documentation on plain paper (more than 60 pages of code, reference data, advice and answers to
questions)

- an immediate notice when a new release is ready on the market.

- rebate coupons for upgrading to new releases.

- source code of the this help file to allow you to easily build the help file for YOUR application. This will
reduce your work when preparing your application to ship and you may find interesting ideas on how to
build a nice help file for MS-Windows.

- source code for useful resources you can use in your application (dialogs, etc) in relation with the YGrep
Search Engine.

- sample files for different languages when available.

- a registration number to identify yourself when contacting us.

- support through fax, phone and Email.

- access to our database of bug reports between releases. No release is done while this database
contains even a single bug. We do not ship products we know contain bugs. But after shipping, users may
discover ugly things in our code, and we trace them while we hunt them.

Commercial software and shareware developpers
You can get a complete Developper Kit for a flat rate including unlimited royalty-free right to distribute the
registered Dynamic Link Library in your product. This allows you to include it in your nice universal text
editor or encryption package.

Customized versions can also be obtained from the author (me, of course) upon request and after
acceptance of a specific quotation (most customizations can be obtained for about twice the Developper
Kit registration license fee).

Remember that you can also ask for source licenses which will include full C source code, with full
resources, definition files (everything you need to rebuild the YGrep Search Engine from scratch). I
cannot give more. Well! May be not give, because you pay for it. But, it's a bargain you could discuss with
me if you need this.

Acknowledgments

I would like to thank the following people whose help has been invaluable during the development of the
YGrep Search Engine:

Christian Lescuyer provided the original idea and a large amount of time for product testing (even in alpha
state).

Martin Heller for his excellent book "Advanced Windows Programming" published by John Wiley & Sons.
This is the most useful book about Windows programming I ever found. If you intend to do MS Windows
programming, you NEED it.

The whole WIN3-L@UICVM.BITNET internet mailing list who provided help when I was stopped in the
development process. Not all the subscribers (more than 2000 currently) provided help, but a dozen of
them are very proficient and helpful. I can remember and thank Walter Knopf, Yossi Oren, Yoav
Chernobroda and Vance Gloster, and many others...

Registration form

Yves Roumazeilles - author

Select "File-Print Topic" from the menu bar to print this form. You will then be able to fill it. You can
accompany you order with check. Credit cards are NOT accepted. You can order by phone or fax.

Please use the form when ordering by mail.

NAME: __

COMPANY: ______________________________________

ADDRESS: ______________________________________

TOWN: __

CITY: ___

POSTCODE: ________ COUNTRY/STATE: ____________

TELEPHONE: _______________________

FAX: _______________________

EMAIL: _______________________

YGrep Search Engine
Single user license ($20 or 130 French Francs) ________
Developer kit license ($295 or 1920 French Francs) ________

BitList Engine
Single user license ($20 or 130 French Francs) ________
Developer kit license ($295 or 1920 French Francs) ________

ClusterView Application
Single user license ($20 or 130 French Francs) ________

Shipping/Handling to Europe ($4 or 25 French Francs) ________

Shipping/Handling outside of Europe ($6 or 40 French Francs) ________

==========

Sub-Total.... ________

European residents, apply VAT/TVA 18.6% (on sub-total) ________

==========

Total........... ________

Here, shipping/handling costs are applied once even for multiple orders.

Make cheques payable to: Yves Roumazeilles

If you wish to pay in other currencies than French Francs or dollars, apply the normal change rate to
French Francs and add a 6% increase to cover the costs my bank charges me. Thank you.

Mail to:

Yves Roumazeilles

63 rue des Moines
75017 PARIS
 (FRANCE)

This address is also the place where you can get information of various kinds (about the status of the
shipment of the order, registration options, product details, technical support, volume discounts, dealer
pricing, etc.)

Phone: +33-1-42.28.74.51
Fax: +33-1-34.30.53.34
Email: Roumazeilles@sagem.fr

Registration form

Public (Software) Library - registration service

Select "File-Print Topic" from the menu bar to print this form. You will then be able to fill it.

You can order with MC, Visa, Amex, or Discovery from the Public (Software) Library by callingYou can
accompany you order with check. Credit cards are NOT accepted. You can order by phone or fax. But
these numbers are for placing an order only!

Please use the form when ordering by mail.

NAME: __

COMPANY: ______________________________________

ADDRESS: ______________________________________

TOWN: __

CITY: __

POSTCODE: ________ COUNTRY/STATE: ____________

TELEPHONE: _______________________

FAX: _______________________

EMAIL: _______________________

YGrep Search Engine (item/product #11244)
Single user license ($20) ________
Developer kit license ($295) ________

BitList Engine (item/product #11245)
Single user license ($20) ________
Developer kit license ($295) ________

ClusterView Application (item/product #11246)
Single user license ($20) ________

Shipping/Handling to Europe ($4) per license ________

Shipping/Handling outside of Europe ($6) per license ________

==========

Sub-Total.... ________

==========

Total........... ________

Contact one of the following:

by phone: 800-2424-PsL or Intl+1+713-524-6394
or by FAX: Intl+1+713-524-6398

or by CIS Email to 71355,470
or send mail to:
PsL
P.O. Box 35705
Houston, TX 77235-5705
 (United States of America)

Remember! The above numbers are for orders only. You cannot expect any kind of support through
them. If you call there, not only will you be left without an appropriate answer, but I will have to pay for the
useless call. PLEASE, if you do not like the long distance calls involved with my address in France, do
prefer sending a Fax (it won't hang your phone too long), sending an Internet Email (it won't cost too
much, and Compuserve, BIX, AOL all have Internet gateways for your mail - I know you are paying for
that, I won't overuse it, but any Email with the product name in its subject field gets a very high priority).

Any questions about the status of the shipment of the order, registration options, product details, technical
support, volume discounts, dealer pricing, site licenses etc, must be directed to:

Yves Roumazeilles
63 rue des Moines
75017 PARIS
 (FRANCE)
Phone: +33-1-42.28.74.51
Fax: +33-1-34.30.53.34
Email: Roumazeilles@sagem.fr

To insure that you get the latest version, PsL will notify us the day of your order and we will ship the
product directly to you.

Application Copyright and User License

The YGrep Search Engine Dynamic Link Library (DLL) and its documentation files and manuals are
copyrighted (C) 1992-93-94-95 by Yves Roumazeilles. Their use is subject to the acceptance of the User
License terms.

All the names used here are trademarks and registered trademarks of their respective owners.

Registration Fee

If you are using the YGrep Search Engine after the initial 30 day evaluation period, you must pay the
license to continue using the package. This payement is named registration fee.

For use by corporations and other institutions, please contact the author for a licensing arrangement.
Customizing and other special licensing are available upon request.

If you want to get the full source code of the library or of one of its components, please contact the author
for a licensing arrangement.

Shareware User License

The program files and the associated documentation (e.g. this documentation) are copyrighted by the
author. The copyright owner hereby licenses you to use the software given these restrictions:

* The program shall be supplied in its original, unmodified form, which includes this documentation.

* For-profit use without a license is prohibited.

* The program may not be included - or bundled - with other goods or services. The licensed version is
ready there for this purpose.

* No fee is charged. An exception is granted for not-for-profit user's group, which are permitted to
charge a small fee (under $5) for materials, handling, postage and general costs. No other
organization is permitted to charge any amount for distribution of copies of the software or
documentation, or to include copies of the software or documentation with sales of their own
products.

There is no warranty of any kind (either implied or not). The copyright owner may not be held liable for
any damages, including any lost profits or other incidental or consequential damages arising out of or
inability to use the software. By using the software, you agree to this.

Alphabetical list of functions
AddWordChar

AGrep

AGrepEmpty

AGrepSubsBuild

CompileAGrep

CompileRGrep

InitWordCharTable

RemoveWordChar

RGrep

RGrepSubsBuild

YGrepVersion

Function groups
Initialization function

Approximative Search functions

Regular Expression Search functions

other functions

Initialization functions
Functions used to initialize the YGrep Search Engine:

The initialization of the Dynamic Link Library (DLL) is done by the internal LibMain function and needs no
specific documentation.

Functions used to initialize some ot the behaviour of the AGrep group of functions:

None.

Functions used to initialize some ot the behaviour of the RGrep group of functions:

AddWordChar

InitWordCharTable

RemoveWordChar

Approximative Search functions
AGrep

AGrepEmpty

AGrepSubsBuild

CompileAGrep

Regular Expression Search functions
CompileRGrep

RGrep

RGrepSubsBuild

Other functions
YGrepVersion

Structures
AGREPINFO structure

RGREPINFO structure

XGREPINFO union

LPAGREPINFO type

LPRGREPINFO type

AGREPINFO
typedef struct tagAGrepInfo { /* agi */

int iErrorCode;
char cPat[WORD_SIZE];
LPSTR TagStart[MAXTAG];
LPSTR TagEnd[MAXTAG];
BLIST uMask;
BLIST uOvMask;
BLIST uLimit;
BLIST uTable[MAXSYM];
int iBitsPerState;
int iWordSize;
int iType;
char cUPat[WORD_SIZE];

} AGREPINFO;

The AGREPINFO structure contains information about the approximative search to be executed by the
AGrep function.

Parameter Description
iErrorCode propagated error code

cPat propagated pattern text string

TagStart table of tags start

TagEnd table of tags end

uMask internal data

uOvMask internal data

uLimit internal data

uTable internal data (characteristic vectors table)

iBitsPerState internal data

iWordSize internal data (actual size in bits of BLIST data structures)

iType MATCH or MISMATCH
cUPat internal data

Comments
Applications should use CompileAGrep to fill this data structure.

LPAGREPINFO
typedef AGREPINFO FAR* LPAGREPINFO;

The LPAGREPINFO type is defined to provided a portable pointer to the AGREPINFO structure.

RGREPINFO
typedef struct tagRGrepInfo { /* rgi */

int iErrorCode;
char cPat[WORD_SIZE];
LPSTR TagStart[MAXTAG];
LPSTR TagEnd[MAXTAG];
int bMatchCase;
int iCircf;
char cDFA[MAXDFA];

} RGREPINFO;

The RGREPINFO structure contains information about the approximative search to be executed by the
RGrep function.

Parameter Description
iErrorCode propagated error code

cPat propagated pattern text string

TagStart table of tags start

TagEnd table of tags end

bMatchCase propagated match information

iCircf match at beginning of line?

cDFA automaton

Comments
Applications should use CompileRGrep to fill this data structure.

LPRGREPINFO
typedef RGREPINFO FAR* LPRGREPINFO;

The LPRGREPINFO type is defined to provided a portable pointer to the RGREPINFO structure.

YGREPINFO
typedef struct tagXGrepInfo { /* ygi */

union {
AGREPINFO aGI;
RGREPINFO rGI;

} y;
int iTypeofInfo; /* 0: empty, 1:AGREP, 2:RGREP */

} XGREPINFO;

The YGREPINFO union is provided as a way to help the user define a common structure for both types of
searches.

Comments
This union is not currently used by the YGrep Search Engine. However, when a similar union will be
needed, YGREPINFO will be use. Consequently, you can see it as a premium proposed to the users.

CompileAGrep
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL CompileAGrep(LPCSTR lpText, UINT k, BOOL bMatachCase, AGREPINFO FAR*
pGI)
LPCSTR lpPattern; /* pattern string to look for */
UINT k; /* number of errors */
BOOL bMatchCase; /* Match case in comparisons? */
AGREPINFO FAR* pGI; /* pointer to search information block */

The CompileAGrep function reprocesses the pattern in order to prepare approximative search.

Parameter Description
lpPattern Specifies the pattern to look for.

k Specifies the number of errors for approximative match.

bMatchCase Specifies whether the search operation should be case sensitive.

Value Meaning
TRUE Force letter case checking

FALSE Do not check letter casing

bMatchCase Specifies whether the search operation should be case sensitive.

pGI Pointer to an information block as will be used in a later to the AGrep function.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

The return value is the number of matches encountered in the explored text string.

Comments
Following are the possible returned values for CompileAGrep:

Value Meaning
AGERR_UNKNOWN_TYPE YGrep Search Engine internal error (no available information on its

origin).
This normally results from semi-automatic checks. This error should be
expected but should trigger a default action like exiting the application.

AGERR_NO_PATTERN A pattern was expected and not found as argument.

AGERR_TOO_LONG AGrep expression is too complex to handle in the internal structures of
the YGrep Search Engine.

AGERR_ALLOC_MEM Not enough memory to build internal structures of the YGrep Search
Engine.

AGERR_STATE Reserved for future use.

When setting the number of errors to 0, the returned value is always AGERR_NO_ERROR (there can be
no error).

This function must be called at least once before calling AGrep.

The user is advised that trying to search for a short pattern with a large number may be useless (if more
errors are allowed than there are characters in the pattern, the match will be trivial, and trivially detected
in AGrep).

See Also
AGrep

AGrep
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL AGrep(LPCSTR lpText, AGREPINFO FAR* pGI)
LPCSTR lpText; /* text string to explore */
AGREPINFO FAR* pGI; /* pointer to search information block */

The AGrep function execute the approximative search with the Shift-Or method.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

pGI Pointer to an information block as built by a previous CompileAGrep call.

Returns
The return value is the number of matches encountered in the explored text string.

If there is no match, the return value is 0.

In case of error, the return value is negative.

When there is one or more matches, the AGREPINFO structure is filled with data describing the
match(es). In particular, the user can use the TagStart[] and TagEnd[] fields.

Comments
Even though the structure of the AGREPINFO block is available, the programmer is advised not to try
filling it with information without calling the CompileAGrep function.

If the number of matches is different from 0, it is possible to find the position of the first occurence in the
pGI structure. The first matching character is pointed by pGI->TagStart[0] and the first non-matching
character is pointed by pGI->TagEnd[0].
See Also
CompileAGrep

AGrepInit
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL AGrepInit(AGREPINFO FAR* pGI)
AGREPINFO FAR* pGI; /* pointer to search information block */

The AGrepInit function should not be used. It is present only for library debugging.

AGrepEmpty
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL AGrepEmpty(AGREPINFO FAR* pGI)
AGREPINFO FAR* pGI; /* pointer to search information block */

The AGrepEmpty function is used to clear the contents of the AGREPINFO structure before releasing
memory.

Parameter Description
pGI Pointer to an information block as built by the CompileAGrep function.

Returns
The returned value is either TRUE in case of success, or FALSE in case of failure.

This function must be called at least once for each of the AGREPINFO structures filled by the
CompileAGrep function. If not, when releasing memory for the AGREPINFO block, its contents are not
cleared (mainly pointers in the BLIST fields) and memory leak occurs. The consequence is then a
slowdown of Windows while your application consumes more and more memory, and in the end, out-of-
memory condition for your application or one of its neighbours.

While programming with the YGrep Search Engine, it must be remembered that internal structures for that
dynamic Link Library are rather large and memory handling is an important part of any MS-Windows
application.

AGrepSubsBuild
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL AGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize, AGREPINFO FAR*
pGI)
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
AGREPINFO FAR* pGI; /* pointer to search information block */

The AGrepSubsBuild function builds the replacement string for the previous match by AGrep based on
the pattern argument. It does not operate the replacement in the original string (read comments at the end
of this reference page).

Parameter Description
lpPattern Specifies the replacement string to substitute for the previous match detected by

AGrep.

lpDest Specifies the buffer which will receive the substitution string built from the pattern and
the matched string.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileAGrep call and used by a
previous AGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for AGrepSubsBuild:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or AGrep was not called

before, or AGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed AGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous AGREPINFO structure.

Before calling this function, you must successively use the CompileAGrep (to initialize the pGI
parameter) and AGrep (to perform the search operation preliminary to substituting a string to the match).

After calling AGrepSubsBuild, you are left with a "destination string" which contains the text to insert
back into the original string. The insertion is not done by the YGrep Search Engine, because it could
involve a large amount of memory management that the programmer/user could prefer doing by himself
following the rules he need for his application. The YGrep Search Engine could not follow these rules.

For example, CompileAGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), AGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call AGrepSubsBuild

with the pattern "large &". It will return an lpDest string containing "large horse" which you can use to
substitute in the original text line (AGrepSubsBuild does not apply the actual substitution). You can
then call again AGrep before substituting again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows from the 7 characters pattern - "large &" - to the final 11 characters lpDest
- "large horse"). The user must provide a buffer large enough for building it.

See Also
CompileAGrep, AGrep

CompileRGrep
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL CompileRGrep(LPCSTR lpText, BOOL bMatachCase, RGREPINFO FAR* pGI)
LPCSTR lpPattern; /* pattern string to look for */
BOOL bMatchCase; /* Match case in comparisons? */
RGREPINFO FAR* pGI; /* pointer to search information block */

The CompileRGrep function reprocesses the pattern in order to prepare regular expression search.

Parameter Description
lpPattern Specifies the text string describing the pattern to look for.

bMatchCase Specifies whether the search operation should be case sensitive.

Value Meaning
TRUE Force letter case checking

FALSE Do not check letter casing

bMatchCase Specifies whether the search operation should be case sensitive.

pGI Pointer to an information block as will be used in a later to the RGrep function.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine Regular Expression.

Following are the possible returned values for CompileRGrep:

Value Meaning
AGERR_ALLOC_MEM Insufficient memory to hold data structures for internal operation.

AGERR_STATE Reserved for future use.

AGERR_NO_PATTERN There was no pattern provided. CompileRGrep tried to use a
previously proposed pattern. But this was the first call to the function.

RGERR_MUNGED_AUTO Munged automaton. Internal error. Should be sign of memory
corruption either by an YGrep Search Engine bug or another
undetected program.

RGERR_MISS_BRACKET Missing closing bracket ']' in expression.

RGERR_EMPTY_ENCL Empty closure. Do not provide an expression containing only [] (i.e. an
empty closure).

RGERR_ILLEGAL_ENCL Illegal closure. Some characters are not allowed in a closure: ^$<>

RGERR_TOO_MANY_PAR Too many parenthesis pairs in the expression.

RGERR_NULL_IN_PAR Null expression inside parenthesis.

RGERR_UNMATCHED Unmatched parenthesis. There is at least one more closing
parenthesis than opening ones.

RGERR_NULL_IN_CRO Null expression inside < >.

RGERR_CYCLICAL_REF A reference is done do itself.

RGERR_UNDETERM_REF A reference is done to an unknown sub-expression.

RGERR_UMATCHED_PAR Unmatched parenthesis. There is at least one less closing parenthesis
than opening ones.

This function must be called at least once before calling RGrep.

See Also
RGrep

RGrep
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL RGrep(LPCSTR lpText, RGREPINFO FAR* pGI)
LPCSTR lpText; /* text string to explore */
RGREPINFO FAR* pGI; /* pointer to search information block */

The RGrep function execute the automaton-oriented search with regular expressions compatible with the
Unix ed(1) editor.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

pGI Pointer to an information block as built by a previous CompileRGrep call.

Returns
The return value is the number of matches encountered in the explored text string.

If there is no match, the return value is 0.

In case of error, the return value is negative. The error code can be found in pGI (iErrorCode structure
field).

If the number of matches is different from 0, it is possible to find the position of the first occurence in the
pGI structure. The first matching character is pointed by pGI->TagStart[0] and the first non-matching
character is pointed by pGI->TagEnd[0].
Comments
Following are the possible error values for RGrep when the returned value is negative.

Value Meaning
RGERR_MUNGED_AUTO The pGI structure contents have been modified, or never initialized by

CompileRGrep..

Even though the structure of the RGREPINFO block is available, the programmer is advised not to try
filling it with information without calling the CompileRGrep function.

See Also
CompileRGrep

RGrepSubsBuild
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL RGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize, RGREPINFO FAR*
pGI)
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
RGREPINFO FAR* pGI; /* pointer to search information block */

The RGrepSubsBuild function builds the replacement string for the previous match by RGrep based on
the pattern argument. It does not operate the replacement in the original string (read comments at the end
of this reference page).

Parameter Description
lpPattern Specifies the replacement string to substitute for the previous match detected by

RGrep.

lpDest Specifies the buffer which will receive the substitution string built from the pattern and
the matched string.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileRGrep call and used by a
previous RGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for RGrepSubsBuild:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or AGrep was not called

before, or AGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed AGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous AGREPINFO structure.

Before calling this function, you must successively use the CompileRGrep (to initialize the pGI
parameter) and RGrep (to perform the search operation preliminary to substituting a string to the match).

After calling RGrepSubsBuild, you are left with a "destination string" which contains the text to insert
back into the original string. The insertion is not done by the YGrep Search Engine, because it could
involve a large amount of memory management that the programmer/user could prefer doing by himself
following the rules he need for his application. The YGrep Search Engine could not follow these rules.

For example, CompileRGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), RGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call RGrepSubsBuild

with the pattern "large &". It will return an lpDest string containing "large horse" which you can use to
substitute in the original text line (RGrepSubsBuild does not apply the actual substitution). You can
then call again RGrep before substituting again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows from the 7 characters pattern - "large &" - to the final 11 characters lpDest
- "large horse"). The user must provide a buffer large enough for building it.

See Also
CompileRGrep, RGrep

InitWordCharTable
#include <windows.h>
#include <ygrep.h>

void FAR PASCAL InitWordCharTable()
The InitWordCharTable function initializes the table containing the list of characters considered as word
characters by the RGrep group of functions.

It takes no parameter.

Returns
No return value.

Comments
The initial characters considered as word characters are 0 to 9, A to Z, a to z and the underscore
character(_). This list can be modified using the AddWordChar and RemoveWordChar functions. The
mostly probable use of these modifications are to include accentuated characters for foreign language, or
to remove the underscore characters which is not usually considered a text character out of the
programming languages community.

AddWordChar
#include <windows.h>
#include <ygrep.h>

void FAR PASCAL AddWordChar(LPCSTR lpChars)
LPCSTR lpChars; /* text string containing the characters to add */

The AddWordChar function adds more characters to the list of word characters for the RGrep group of
functions.

Parameter Description
lpChars Specifies all the characters to be added to the list of word characters

Returns
No return value

Comments
The characters in the parameter string can be in any order and can be in the full range of the extended (8-
bit) ASCII character set (excluding the null character, of course).

See Also
InitWordCharTable, RemoveWordChar.

RemoveWordChar
#include <windows.h>
#include <ygrep.h>

int FAR PASCAL RemoveWordChar(LPCSTR lpChars)
LPCSTR lpSrc; /* text string to explore */

The RemoveWordChar function adds more characters to the list of word characters for the RGrep group
of functions.

Parameter Description
lpChars Specifies all the characters to be removed from the list of word characters

Returns
No return value.

Comments
The characters in the parameter string can be in any order and can be in the full range of the extended (8-
bit) ASCII character set (excluding the null character, of course).

See Also
InitWordCharTable, AddWordChar

YGrepVersion
#include <windows.h>
#include <ygrep.h>

WORD YGrepVersion()
The YGrepVersion function provides the version number of the DLL.

Parameter Description
none

Returns
The return WORD value has the following format (when represented as an hexadecimal value):

Vrrr

Where V is the version number (major) and rrr is the release number (minor). For example, version 1.20d
is coded as 0x1204.

This value may be used to determine the capabilities/compatiblity of an already loaded version of the
YGREP Dynamic Link Library and to insure that it is able to answer to specific calls.

Comments
The application may never call this function. But it can be used to check at run time the availability of
certain functions in the Dynamic Link Library.

Other packages of the Engine Series

The current package is part of a series of so-called Engines for power programmers and power users.
They can be found in all good shareware libraries (Well! At least, they look good to me if they have my
packages...).

The Engine Series include the following programmers tools:

YGrep Search Engine

BitList Engine

and an application:

ClusterView

The Engine Series and their documentation files and manuals are copyrighted (C) 1993-94-95 by Yves
Roumazeilles.

ClusterView Application

The ClusterView application is an MS-Windows file viewer able to handle multiple files grouped in a
structure named a cluster. It is an efficient way to look at groups of files which are too large to be stored
in main memory.

The main advantages of this application are:

file viewer for files larger than the memory size AND the swap file size.

file viewer for file groups (named clusters).

search capabilities including approximative search (or search for a pattern with a number of errors)
and regular expression search (compatible with Unix GREP search).

This application is a must when you handle large files under MS-Windows and cannot afford large
amounts of memory and/or large swap files and/or the performance penalty imposed by most other file
viewers.

The ClusterView application uses and demonstrates the capabilities of the AGrep Search Engine in a
real-life context.

YGrep Search Engine

The YGrep Search Engine is a text search Dynamic Link Library (DLL) to be used with any kind of MS-
Windows application. It has two possibilities:

approximative search based on Baeza-Yates algorithm to find a pattern which is only partly known
(also known as search with erroneous patterns). For example, you can search for "pattern" with 1
error (at most) and it will match "pattern", "pittern" and "Pattern" while stepping over "lantern" (2
errors).

search modelled on the Unix utility named GREP. It is particularly useful for complex searching with
the help of its specific search "language" to describe the pattern you look for. For example, you can
search for "^pattern" to look for "pattern" at the beginning of a line; or for "[pl]a[nt]tern" to look for
either "pattern" or "lantern". An extensive description of the language can be found on any Unix
system, or in the help file accompanying the YGrep Search Engine shareware edition on your
preferred BBS or Internet site.

Both are particularly useful to improve greatly the search capability of an existing tool such as a text
editor, a data base search engine, etc.

BitList Engine

The BitList Engine is a DLL designed to handle lists of bits (and to a small extent, big numbers). It was
built because of the limitations of the ANSI-C bit fields which cannot be larger than an "unsigned long".

The BitList Engine allows you to build very large bit lists and to handle them with a set of functions
covering a large range of needs (this is continuously expanding):

constructors/copy-constructors/copy operators

logical operators (AND,OR,NOT,etc.)

arithmetic operations (ADD,SUB,etc.)

shift operations (left and right)

others...

This will be particularly useful to handle large sets (as belong to the programmer's bag of tools) and to
work on encryption/compression code.

Author Address
Registration fees can be sent to, and the author can be reached at the following address (Email and duly
paid registration fee is the preferred interface if you want a prompt answer):

Yves Roumazeilles
63 rue des Moines
75017 PARIS (FRANCE)
Phone: +33 1-42.28.74.51
Fax: +33 1-34.30.50.28
Email: Yves.Roumazeilles@sagem.fr

For comments, suggestions and bug reports, Email is also available at:

Yves.Roumazeilles@sagem.fr
Roumazeilles@sagem.fr

What is Shareware?
"Shareware" is a way to distribute software while retaining the best of all worlds. People are invited to
freely make copies of the software for evaluation purposes (it's cheap distribution). You are both legally
and morally obliged to pay the registration fee if you start using the software after an initial 30 day
evaluation period (the author gets money from its work). This respects the rights of the author while
avoiding burdenning the users with high costs of traditionnal distribution channels.

Shareware is not free, Shareware is not public domain, but Shareware is not expensive (I actually cannot
live from it...)

Remember! The fee is small because the distribution is simple, but the user (YOU) must honestly pay the
registration fee. This will allow future releases to hit the market soon with many enhancements.

